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SHOCK STRUCTURE IN A PARTIALLY IONIZED GAS

Michel Y. Jaffrin

Department of Mechanical Engineering
Massachusetts Institute of Technology, Cambridge, Massachusetts

ABSTRACT

The one-dimensional, steady state structure of a shock

wave in a partially ionized gas is investigated using the

Navier-Stokes equations for the atom, electron, and ion fluids.

The plasma is assumed quasi-neutral without a change in ioniza-

tion across the shock. A characteristic feature common to

weakly and strongly ionized gases is the existence of a broad

layer of elevated electron temperature (thermal layer) ahead

of the shock front due to the high electron thermal conductivity

and of a precursor and an imbedded axial electric field induced

by the charge separation. Because o? the large atom-ion

collision cross section due to the charge exchange mechanism,

the ion slip is small when less than 30% of the plasma is ionized.

In a weakly ionized plasma, the atom flow is unaffected by the

ionized particles and the structure consists of an ordinary atom

shock imbedded in the thermal layer. When the plasma is sub-

stantially ionized, the heavy particles are partially compressed

and heated in the thermal layer and the ion and atom temperatures

overshoot their downstream values in the shock. The induced

electric fields increase with the degree of ionization and the
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free stream Mach number while the shock thickness decreases.

An experimental measurement in partially ionized hydrogen of

the variation of potential in a strong shock gives a shock

thickness and a potential rise across the imbedded shock in

good agreement with the calculated values.

I. INTRODUCTION

While the study of a fully ionized plasma is relevant to

astrophysical problems, it is more realistic to consider a

partially ionized plasma in problems of re-entry physics and

related laboratory experiments. The purpose of this work is to

extend our solution for the shock structure in a fully ionized

1Igas 1to the case of a partially ionized gas, and to investigate

the various plasn regimes leading to different types of shock

structures. The shock structure in an ionized gas is complex

and consists in general of a thin region in which most of the

deceleration and heating of the flow occurs, imbedded within a

much broader relaxation region. In our analysis, the term shock

refers to the thin region while the broad relaxation region is

termed a thermal layer.

Of particular interest in the present work is the study of

the effects of the ion-atom diffusion or ion slip which is measuredt

by the velocity and temperature differences between ions and atoms.

The negative electric field induced by the charge separation in-

side the shock slows down the ions and creates an initial ion

1. M. Y. Jaffrin and R. F. Probstein, Phys. Fluids 7, Oct. (196).
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slip, which vanishes at the end of the shock after a sufficient

number of ion-atom collisions.

As fn our previous work, we seek the solution for a steady

one-dimensional shock with no applied external electric or

magnetic fields. The plasma is assumed here to be a ternery

mixture of rt oms, singly ionized ions, and electrons. The

analysis is based on a three-fluid continuum approach using the

Navier-Stokes equations as a model.

In order to make the problem mathematically tractable, we

introduce three basic assumptions:

a. Frozen ionization: The increase in temperature

across the shock produces further ionization of the gas following

the shock, however, it is assumed that the characteristic chemical

lengths are large compared to the shock thickness so that no

ionization or recombination reactions take place in the shock

itself.

b. Quasi-charge neutrality: It is assumed that the

over all charge separation is negligible, a condition satisfied

when the Debye length is much smaller than the mean free path,

which is met for most plasmas.

c. Small ion slip: This follows from the fact that

because of the large ion-atom cross section due to the charge

exchange mechanism, the ion-atom mean free path Iia 2 .is in general

small compared to the shock thickness A . As a result the ion

slip, which is of the order of ia2/As, is small and may be

computed by an Iterative method.



The shock structure in a fully ionized gas has been in-

vestigated by several authors but the case of a partially

ionized gas has received less attention. Grewal and Talbot5,

assuming a Mott-Smith solution for the ions and atoms, and

neglecting the ion slip found the existence of a broad thermal

layer in front of the shock where the electron temperature

rises. But they did not investigate the structure of the ion-

atom shock and the assumption of small electron energy restricts

their solution to the weakly ionized case. Pikel'ner6 con-

sidered the inviscid transition region between a magnetohydro-

dynamic shock and the downstream state but he did not take into

account the charge exchange mechanism which, by considerably

increasing the atom-ion cross section, strongly inhibits 'he

ion slip in the relaxation region.

II. BASIC EQUATIONS

There are for each type of particle, atom, ion, and electron

the three continuum equations of mass, momentum, and energy. The

electric field whose only non-zero component is E' is governed
x

by Poisson's equation

2. J. D. Jukes, J. Fluid Mech. 3, 275 (1957)

3. V. D. Shafranov, Zh. Eksperim. i Teor. Fiz. 32, 1453 (1957)
(Eng. Transl: Soviet Phys. JETP 5, 1183 (1937)]

4. 0. W. Greenberg, H. K. Sen, and Y. M. Treve, Phys. Fluids 3,

379 (1960)

5. M. S. Grewal and L. Talbot, J. Fluid Mech. 16, 573 (1963)

6. S. B. Pikel'ner, Zh. Eksperim. i Teor. Fiz. 36, 1536 (1959)
[Eng. Tranal.: Soviet Phys. JETP 7, 9 (1959T
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dE'
x = 4re(n! - n') (2.1)dx' e

Here e is the magnitude of the electronic charge, x' the axial

distance, and n' the number density; the subscripts i, e and

a, denote ions, electrons and atoms respectively and the

"primes" are used to distinguish the physical variables from

the dimensionless variables which will be used later.

The net current j vanishes so that we have

J x =  0 = ( n u i ' n 'U'

or

niui' = neu eii e e

where u' is the velocity. On integrating the steady one dimensional

mass conservation equations for the ions and electrons, when there

is no ionization or recombination, the constants of integration

Ci and Ce are the same, giving:

n'u= n'u' = C. = C (2.2)
i e e 1 e

The conservation of mass for atoms yields

n'u' = C (2.3)a a a
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The constants of integration C and C are related to each othera

through the degree of ionization a. In the undisturbed plasma,

all three species have the same mean velocity and the degree of

ionization a can be expressed by the relation:

In C.

a ni a i=n + n C, + C a (.)

The conservation of momentum for the three species yields

the following equations:

du' dp' umC - , + , d du' I

d dx' - "r(P ::) - n = E Pjk,

(2.5)

where m is the particle mass, p" che longitudinal coefficient

of viscosity, p' the pressure and PJk represents the longitudinal

momentum transfer between species J and k and where J = i, e, a

with the convention e i = +e, e - -e, ea = 0. The summation

is made for k# J. The longitudinal coefficient of viscosity ul

is related to the classical coefficient of viscosity P by the

relation

1"= 1
4 /3 1  .

The corresponding energy equations are

dT' du' du' 2

2dr (p'u) - -- (v . 4 ) U -- x x n dxI

-nju3 ej4 = I (Jk * ujPJk) , (2.6)
k$ j
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where K is the thermal conductivity, T'the absolute temperature

and &Jk denotes the kinetic energy transfer from the k-

particles to the J-particles. The basic system is completed

by the equations of state for the three species

p= n~ kl" (2.7)

With the dissipative coefficients and transfer terms assumed

to be known functions of the dependent variables, then Eqs.

(2.1) to (2.7) constitute a system of thirteen equations for

the thirteen unknowns u3 n3, T!, P' and E'. However, since the

continuity and state equations are algebraic, and six in number,

the problem is reducible to the solution of seven simultaneous

differential equations for the appropriate seven unknowns.

We may simplify the system of equations first by noting

that from Newton's third law of motion,

PJk + PkJ E 0 , (2.8)

&Jk 4 u'jPjk + & u 'J +Ukk . (2.9)

Secondly, we note that the electron inertia and viscous terms are

much smaller than the corresponding ion and atom terms and may

therefore be neglected.
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After employing the above conditions and approximations the

basic set of shock structure equations viUl consist of the two

algebraic continuity equations (2.2) and (2.3), Poisson's

equation (2.1), and the folloving six differential equations:

a. The electron momentum equation (2.5), j = e

r (n: kT' ) + nee El - P + P (2.10)e- x ei ea"

b. The ion-electron momentum equation, obtained by

adding the ion and electron momentum equations

du d d dui
m ci r-+ .a (n! kT + nI kT) - dr ( -r)

(n (- -n)eE = Pa + Pe (2.11)

c. The plasma momentum equation, obtained by adding

the momentum equations for the three species. On using Eqs.

(2.1) and (2.8), the resulting equation can be integrated once

to give

mi(Cau; + Ciu) + n'kTI + nikT + n'kTtSa ai ee

du' du' E 2

a i xa U-r- i d-xr- - = P (.2
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Here the atom mass is assumed to be equal to tne ion mass and

the constant of integration P is determined by the boundary

conditions.

d. The electron internal energy equation, wnich is

obtained by multiplying the electron momentum equation by u'e

and subtracting the result from the electron energy equation.

It may be written

dT' kT' du' dT'
3 Cik e e e d e e )

-i dx iu ('e d' ea + &ei
e

(2.13)

e. The ion internal energy equation, obtained by the

same process as Eq. (2.13), which may be written

dT! kT! du! du! dT
1 1 2 d I3-c - + c i -. C"(-) -- (i a-r

Ci dx' i g-! U1 dx' ( d.

ia + Eie (2.1h)

f. The plasma energy equation, obtained by adding

Eqs. (2.6) for the three species with the aid of Eq. (2.9) and

integrating the resulting equation to give

C C. dT'm a u,2 + ml 2 2 5_ C'+ .T' + )]'f - <-m a -u11 + 2 k[C T + C,(T + T' ] a
2 a +i2 a a ii e a dx'

dT' dT' du' du'
i d ae dx a a '' H ,(2.15)

i - 'e. dx adli x
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where the constant of integration 3 is evaluated at the boundary

conditions.

III. DISSIPATION AVD T ASFER COEFFICIENTS

We now evaluate the dissipation and transfer coefficients

which are present in the shock structure equations (2.1) - (2.15).

-The classical coefficients of viscosity and thermal conduction

for a pure monatomic gas are given respectively by the rel-tionsT

37 ,mc(c) (3.1)

12

(3 .2)

where c = (8 kT'/wm) 1 / 2 is the mean thermal speed, v the col-

lision frequency and k the Boltzmann constant. The collision

frequency for a pure gas is equal to:

v n'Q'c (3.3)
aa

where Q' is the effective hard sphere cross section for atom-
aa

atom collisions.

The relations (3.1) and (3.2) can be extended to the corn-

8
ponent L of a gas mixture as follows :

7. S. Chapman and T. G. Cowling The Mathematical Theory of Non-
Uniform Gases, (Cambridge University Press, fNew York, 1952)
pp. 100-104.

8. J. A. Fay, "Hypersonic Heat Transfer in the Air Laminar Boundary
Layer," Avco Everett Research Lab. AMP 71, March 1962.
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15k (3 .4b)~t 3~2  V

where v is the total collision frequiency for momentum exchanpe

given by

k .2 2n1/2 . (3.5)

Here, k is summed over all components of the mixture,

m = MmkI(m, + ink) is the reduced mass, (c 2 + C2)1/2 is the

mean relative thermal velocity and 2m k/ML is the fraction of

momentum transferred per collision between 2 particles of

arbitrary mass. The quantity Qik' is the collision cross section

for particles L and k. For a pure gas, v t reduces to v defined

by Eq. (3.3).

On developing the relation (3.5), the atom, ion, and electron

collision frequencies may be written respectively as

kTI T'+T, + ,8kT' 2m

v = flQ# (16 -1)/2 + ntQi,[8k( a 1 i1/2 + n'Q'a 1/2 e
a a aa Wmi emim e  mi

(3.6)

T' + T I kT I  kTi 2m

vi n'Qa[8k( a + nQ! (16 + n'Q'(8 -;7-)a i m i  ) + e i n m

(3.7)
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S1'Q9 (8 e.) 1/2 + 2!Qe.i(8 e)1/2 + nQ (16 e)1/2
e a ea V I Im qee ur

ee e

(3.8)

The last terms of Eqs. (3.6) and (3.7) represent the effect of

the electron-heavy particle collisions and are of the o-'er of

2 vhere

("el1l2 1
C (m) --- for Argon.

These terms are very small and will be neglected in comparison

to one. It is now necessary to evaluate the various cross

sections remaining in the above relations.

The cross sections for collisions between electrically

charged particles are deduced from the value of the viscosity

9coefficient for an ionized gas given by Chapman and Cowling

Using the SpitzerI0 result that the Debye length is the proper

cutoff impact parameter, one finds

5 1 (kT')5/2

e loge A

where A is a dimensionless cutoff impact parameter equal to

3(k3T'3/rn')l/2/2e3. Comparing Eqs. (3.1) and (3.9) we obtain

the following values for the Coulomb cross section:

'4
ne loge Aw 4(lo)2  j = i, e (3.10)

9. See Ref. 7, p. 179.

10. L. Spitzer Jr., Physics of Fullv Ionized Gases (Interscience
Publishers, Inc., New Yor, 19 ) p. 72.
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Since T'/me >> T/m the electron temperature is the relevant
e e Ii

temperature .in the calculation of ion-electron collision cross

section and

Qei = Qe (3.11)

The values of the other required cross sections Q1aa Qia

and Q' depend on the gas considered. They will here be
ea

evaluated from experimental results for Argon. The atom-atom

collision cross section Q' is obtained from the values of theaa

visczsity coefficient p a given by Amdur and MasonI . At high

temperatures u - 31.10- 7 T' 3/4 g/cm sec, which corresponds to
a 10 a

q~a = 170.10-1 /T'
I/ cm2

a

Experimental data compiled by Fay8 show that the atom-ion cross

section Q! is much bigger than the atom-atom cross section be-

cause of the charge exchange mechanism. This cross section

decreases very slowly with the temperature and will be taken

constant and given by

Q! = 14o 10-16 cm2

11. I. Amdur and E. A. Mason, Phys. Fluids 1, 370, (1958).
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he atom-electron cross section Qt 12,13 has a low minimum of
ea

0.25 • 10-16 cm2 at T' = 4600 0 K because of the strong Ramsauer
e

effect. It increases rapidly for higher temperatures up to 106 oK

and decreases again. For a range of temperature up to 5 - 105 oK

we shall use the following approximate relations obtained from Ref. 12 by

curve fitting

Q' = (-0.35 + 0.775 10-l V) x 10- 1 6 cm2  T' > 10 oK
ea e e

Qa = (0.39 - 0.551 10 - 4 T' + 0.595 10- 8 T',2).1-1 6 cn2 T' < 10

In any case the momentum and energy exchange between electrons and

atoms is so slow that the structure of the shock itself depends

only very weakly on the cross section Q' *ea

For generality the analysis will be carried out with the cross

sections expressed as known functions of the temperature which are

not explicitly specified. The results obtained will be qualitatively

valid for other values of the cross sections provided that the

essential feature Qa I > Q' is retained.
ia a

The viscosity and thermal conduction coefficients for the atom

gas may then be written in the form

(un. kT')l/ 2

a 1° a T, a T, (3.12a)
aai -i a a2

n' Q' 2T'
a aa a

12. I. P. Shkarofsky, M. P. Bachynski and T. W. Johnston, Planetary
and Space Science 6. 24, 1961

13. S. C. Brown, basic Data of Plasma Physics (The Technology Press of
the Massachusetts Institute of Technology, and J. Wiley and Sons
Tnc., N. Y., 1959) p. 19.
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75k kT)/2

a n:Q ' T'm T' (3.12b)a n~ T' + Tj

tj + ia a 1/12
n# Q 2T#

a aa a

by We note that the viscosity and thermal conduction coefficients

of the atom gas are reduced by the presence of the ions.

For the ion gas these coefficients are given by

C< 104 OK 5n!'16 =-, (7rmk) 1/2 T.!
16Qi an~ a 113T )/ + T" noTQ1 2T': - (3.13a)

a i 1/2 ni ii

a Qia a 1

1 wk)1/2 kT'

64Q In' M~

i a 2 12 Tn Q1 2TI . (3.13b)( 1/[l + (ai-- 1 1/2]

a a

while for the electron gas

-nkT'

75 ( e)2 k

,I: . ... (3.1 l,)
e ,j n' 'e r2 n Q e a

6 4 Qee(1 + r2) (1 + a.. .
(1 + r2) n; 'e
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The viscosity and thermal conduction coefficients of the ionized

particles are here reduced by the presence of atoms. The electron

viscosity coefficient is smaller than Vi by a factor of the order

of E * (-)l/2 and the electron viscosity term may be neglectedmi

in the structure equations, as it was noted earlier.

From Eqs. (2.12) and (2.15), we note that for given values of

the Mach number, velocities and temperatures, the velocity and

temperature gradients are inversely proportional to the viscosity

and the thermal conduction coefficients. Since, from Eq. (2.10)

the electric field is proportional to a temperature and velocity

gradient, the whole shock structure depends critically on the

behavior of the dissipation coefficients. As the viscosity and

thermal conduction of the atoms coefficients are progressively re-

placed by those of the ions as the main dissipative mechanisms,

the plasma regime changes from weakly ionized to fully ionized and

the shock structure varies accordingly. The different plasma regimes

for Argon are illustrated in the a, T' diagram of Fig. 1. When

n'Q, << n'Q' and niQ < n'Q' , it may be seen from Eqs. (3.12)
iii aia iia a aa

and (3.13) that the ion and atom dissipative coefficients depend

mostly on the atoms. Moreover, if a << 1 the ion dissipation is

negligible compared with the atom dissipation and the region delimited

by the three preceding inequalities represents the weakly ionized

regime. On the other hand, when n'Q' > n'Q and n'Q' > n' '
. iia naaa a iii na ia,

the atom collisional dissipation is much smaller than the ion

dissipation and the ion viscosity and thermal conduction approach
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their fully ionized value: this we term the quasi-fully ionized

region. Finally, the intermediate range between a = 10 - 3 and

a = 0.5 represents a mixed regime that we denote by partially

ionized.

The momentum exchanges between the different species of a

l14
partially ionized gas have been computed by Zhdanov l

* On

neglecting thermal diffusion but extending Zhdanov's results to

a multi-temperature model, the momentum transfer per unit volume

from species k to species J is given by

jmjk jk -

where

8kT' 8kT1
Z- n(_._ + (:a. (3.16)
jk 3 r kivm j

S

The quantity Zjk is of the same order as the collision time. In

particular, the ion-atom momentum transfer is

P 4 r- n1n'[- k(T' + T)]I'/2 Q(u' - uj) (3.17)ai T ai a it

ed

Using the inequality _me >> mi the electron-atom momentum transfer is,

e i

m kT'
- 8 P nnQ' (u' - u') (3.18)

Pae a e i Q, a a e

14. Zhdanov V. M., PMM 26, 280, (1962). [Eng. Transl.: Applied
Mathematics and Mechanics 26, 401 (1962).)
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Since

1/2 1/2

it follows that

ai ae

The ion-electron momentum transfer is given by

8 m T' /2
me eTI

Pe "8 n In'( e) Q, )12 (u, u!) (3.19)
ei 3 ie W ei e i

The total ion-electron energy transfer has been computed by

Burgers i 5 . Expanding Burgers' result in powers of the small
m1/2

quantity c 112) we find that the ion-electron energy

transfer may be written1

to- + UePei 8 v 1 Ci[k(T' - TI)

3u e -uI) (miuj + meu;)] (3.20)

Petschek and Byron have computed the atom-electron energy

transfer due to the random motion of the particles for arbitrary

interaction laws which is given by

15. J. M. Burgers, in Plasma amics, edited by F. H. Clauser

(Addison-Wesley Publishing Co., Reading, Mass., 1960) p. 156.

16. H. Petschek and S. Byron, Annals of Physics 1, 270, (1957).
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2m (T' - T')
= - e a e 3 (

m T a e e e e c 3e.2
e

where c e is the random electron velocity, a(c ) the crosse e

section and f the Yaxwell distribution function. The in-
e

tegral term in Eq. (3.21) represents the mean value of the

product c 3(ce Recalling that Q ' is the cross section

averaged over a Maxwell distribution and approximating the

mean value of the product c3 O(c ) by the product of the
e e

averages of the two terms, we obtain

m kT
AE ' - 8 o2 n'n' (e e)1/2 - k(T' - T') (3.22)a e I m. a e

1

The total energy transfer is the sum of the energy transfers

due to the random and directed motions of the particles and is

given by

m kT' o

U+ p = -82 nane(,e. , e [k(Ta - T')
ae aae a r i

(u' - u')
+ a 3 (m4u' + meue)] (3.23)

The ion-atom energy transfer is derived in Appendix A and

the result is

a + uaPe - 2 ,2 n'n'i[ k (T' + T)]1/ 2 Q1 [k(T' - TI)aeia im a i ia Ta i

+!i
(u'" ui- (u + u (')] k
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IV. DI-3SIONLESS EQUATIONS AND BOUNDARY CMID!TIONS

At upstream infinity (x - - -) and at downstream infinity

(x + -) all gradients vaish and the system of equations (2.1) -

(2.15) reduces to the Hugoniot conditions. We note that on each

side of the shock, the three species have the same velocity end

temperature, and the electric field vanishes.

Since the shock thickness depends generally on the downstream

state, we choose to normalize the velocities and temperatures with

respect to their downstream values after the shock. In what follows

we denote the upstream state by subscript 1 and the downstream

state by subscript 2. On this basis we set

u, a ut/u , T = T?/T' (4.1)

with J i, e, and a. We note that the dimensionless velocities

are of order of one but the upstream dimensionless temperatures

are very small for strong shocks.

The appropriate dimensionless electric field is

eE' A

E 2T (4.2)
kT'2

where A T ( / is the downstream Debye length. The
D2 4we 2n'

e2

corresponding dimensionless potential * is

S= e (4.3)
kT2
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where 4' is the actual potential.

We also introduce the dimensionless charge separation defined

by t'he relation

I e I I

n 2 u i  ue2i e

Me independent variable is made dimensionless with respect to

the shock thickness A by the relationS

xs = x'/A s  , (45)

The cross sections Q' are normalized with respect to their
aB

downstream values by the relation

Q = Q'/Q' 2 (4.6)

It is convenient at this .point to introduce the following

mean free paths which are related to the various downstream cross-

section Q 2as 2
atom-atom mean free path

t a r2 n'a (4.7a)
2 a2 2

ion-ion mean free path

1ii2 r2 n'i2 Qit2 F- (4.Tb)
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atom-ion mean free Dath

ti = (12 n'2 "!2a°  (4.7c)
'a2 a2 82

atom-electron mean free path

Lea2 = (v n Qa 2
-1  (4.7d)

Since n' = n'2, Q = Q =Qi the ion-electron and the
12 e2 9 e2 ei2 12

electron-electron mean free paths are both equal to the ion-

ion mean free path.

Finally, we define the downstream plasma Mach number M2 by

the relation

u92 
t 2

2 5(2n "+ n' ) k(' 5, (i.8)
2 ~ ~ a 27 -,+n R _kT' (Il+ca)

~+ n')+m :a 2 23
2e 

2

where as previously the electron mass is neglected in comparison

to the ion mass.

If we employ the non-dimensionalization of Eqs. (4.1) - (4.8)

neglecting terms of order c and smaller, such as the electron

viscosity and inertia terms, then we may write in dimensionless form:

Poisson's equation (from Eq. (2.1))

dE AsM - 6 (4.9)
dx xD
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On the other hand, the electron momentum equation is given from

Eq. (2.5) with J = e by

dE /2 [Qae 1 + ei 61U -_( ) + ac - 1 (L-s - -.
dx uD2u seu U .
s e e ae2  a e 112

From the above relation we see that

AD

E = 0(A
S

while from Eq. (4.9)

2
AD 2 D2O(- --~ E)= 0(-)

S A2
S

In most plasmas, the Debye length is much smaller than the mean

free path, and therefore much smaller than the shock thickness.

It follows that the dimensionless quantities E and 6 are very small

and can be neglected in comparison to one. Therefore, in all

structure equations, except Poisson's equation (4.9) we set

6=0

U = U.
e 1 2

E= 0(-) ".0
A
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We note that the ion and electron fluids move together although

their temperatures may be different.

With the approximations noted above our basic dimensionless

equations in addition to Poisson's equation may be written:

Electron momentum equation (from Eq. (2.5))

T AE T-
-L~ + s.± = c~L~ 1 2 Q( 410)
x ui AD U. e eau u

s D 2 1 ea2  a 1

Ion-electron momentum equatir-. (from Eq. (2.11))

L. T1/2dui +T eia2 d ( du
a)- - ( - - -- )

32 dx dx - A dx s  F.dx
S 5 s 5 1 S

ai- 1 1a +/22

2sua u i tia2  a l ea2  e

(4.11)

Plasma momentum equation (from Eq. (2.12))

T (T + T
• M2(1 + c) [Ua 1 + a- (uf T T) _aa i T- , , -  e

2~~~~~ e ) -32 a 1-a i Ua a uI

La T1/2 du T/2u
ia a _t2 u.-c --.. c ---- F i- d

A F dx 1- a A F dx 0 (12A Fa s a s s

Electron internal energy equation (from Eq. (2.13))
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dT T du. i 2 dT A T12
3 e 2 d e e) b s e
2 dx +u. dx CA dx F dx L U . eaS i s s s e s e! a i

422( + )(ui_ u)2] bcA sTe
/2

-T T 2 1_ (Te - -Te a 9 a 2 Qee e

9... U.
112

(4.13)

Ion internal energy equation (from Eq. (2.14))

t. T1,~/2 d.1 2  d 112d

3 dT. T. du. ia2  . duT /2
- - - - (. (I-...-)

2 -dx u. d-- A F. dx -A dx F. dx
S 1 S s I S S 1 S

bA. T a + , [T. -T + 1M 2 (1 + )u (u - u

= - 2 ia u u. a 92 ai a

bcA T1' 2
--- -e (Ti - Te Qe (4.14)

1ii 2U e e
2 i

Plasma energy equation (from Eq. (2.15))

T
e 2) 5 M(l + a) [U2 -1+ -1 - (u2 - 51+] +(T. ,,T1-2))

2a 1 -aC a 1)+. - i-a e

xaa TI /2 dT u TI/2 du ii TI/2 0T
2a a A2a a a a 2 e e

(dx A F UT (1 d a CA F dx
S a s s a s s e s

.,1/2
a a dT. du.

(1 - a) F.A (d '--1 + cu ) = 0 (4.15)
i s s s
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The dimensionless potential may be obtained from the relation

0 e ICII s dx(4~.16)kT x fxD 2 s

The quantities, a, b, c, d, f, Fat Fit and F appearing in

the dimensionless equations (4.10) - (4.15) are defined as follows:

8 5(+ a) )1/2 b = 8
3 3 2w b (5w~1 + a)1/2 9

3 2

c 5_ (low( + ))12 d = 75 6w 112

L ~3 M2 21* 5(l + a)

d2

f= . (4.17)

2 ua T + T )1/2
F uaQ+a a a) (4.18)

a 2 Qia u ( 2TaFa = aa + (i1- ) t iau. 2
a 1 1

Fi ,Qi - + UTQ (4.19)
Lii ua i  ia

)] F = Q + . .. 2 (4.20)e (i 'F) u
ea

2  a

When the quantities Fa, Fi, and Fe are replaced by the

definitions given above, Eqs. (4.9) - (4.15) represent a set of
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seven equations for the seven unknown variables uas U 1 T a is

T e E and 6 as a function of the independent variable xs. Had

we normalized the variables with respect to their upstream values

we would havP received precisely the same set of equations with

the subscript 1 replacing the subscript 2 in the parameters.

Any state of the plasma will be represented by a point in

the seven dimensional phase space whose coordinates are the

dependent variables. The states 1 and 2 upstream and downstream

of the shock respectively, are singular points of the system of

Eqs. (4.9) - (4.15). The dimensionless Hugoniot relations obtained

by setting the derivatives equal to zero specify the coordinates

of these singular points. In particular the coordinates of point

1 are

E1 =0

ul •0 u

M2+

a, = T1 = 642(.12

u u.2 = u2  -

22
(5~ - 1) ( _2 + 3)

T =T =T 2 (4.21)
a 1 21 1 1 16M2

1 2

while the coordil~atcs of point 2 are

E 2=0

ua 2  U 1 2U2

T =T =T 2=1 *(4.22)
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Here the Mach number behind the shock M2 is related to the free

stream Mach number It by the relation

M2 . 'I(4.23)
2

It is important to note that the Hugoniot conditions depend on

the plasma Mach number only. For the same velocity and tem-

perature conditions upstream, the plasma Mach number and therefore

the shock strength are reduced when the degree of ionization in-

creases,

A shock will exist whenever uI > 1, which requires M1 > 1.

The atom and ion Mach numbers are greater than the plasma Mach

number by the factor (I + a) 1 / 2 , and the atom and ion flows are

supersonic when M, > 1. The electron Mach number is proportional

to c times the plasma Mach number, so that the electron flow is

subsonic unless Ml is very large.

The shock thicknesses A in which the various collisionals

effects are important can now be estimated from the appropriate

terms in the dimensionless equations. For example, we note from

Eq. (4.13) that the electron thermal conduction term is of the

order of Zii/eAs; it is therefore of order one when As is

O( ii2/c). This implies that the electron thermal conduction

can broaden the shock to a thickness of the order of ii2/c. In

the weakly and partially ionized regimes where the dimensionless

expressions Fa, Fit and F are 0(1), the possible shock thicknesses

and their corresponding collisional mechanisms are:
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Mchanisms Shock thickness

Electron thermal conduction, tii/C

electron-ion energy transfer, i/

electron-atom energy and momentum transfer, Z /Cea 2

atom thermal conduction and viscosity, a2

ion thermal conduction and viscosity, 2.

atom-ion momentum and energy transfer, 2.ia 2

Obviously the shock structure will depend on the relative

magnitude of the various mean free paths. The values of the

ratios Iia2/Laa2, ea2 /ii 2 and kia2 Aii 2 are plotted in Fig. 2

as a function of the temperature for different values of the

degree of ionization for Argon. It may be noted that the ratio

xia2 /aa2 is independent of a and is always small compared to one.

The ion-ion mean free path ;ii is larger than the atom-atom mean

free path I2 for low degrees of ionization but it is smaller thanaa2
t2 for a = 0.5 and T'< 2.5 10 5 °K.aa2

In the quasi-fully ionized regime Fa = O(1 aa/2.a2 )

Fi  0(1 ia2/L 2 ) and the atom thermal conductivity and viscosity

lead to a shock thickness O(tia 2 ) while the ion thermal conduction

and viscosity correspond to a shock thickness 0( 11 ). The shock

thi esses corresponding to the other collisional mechanisms are not

modified. However we shall not consider this regime because of its

1
similarity with the fully ionized case
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V. WEAKLY IONIZED) PLASMA a << 1

We consider first the case of the weakly ionized plasma,

because of the simplifications introduced by the assumption

a << 1. The atom gas is indeed unaffected by the charged

particles provided that the degree of ionization is very small.

We note that the terms representing the charged particles in Eqs.

(4.12) and (4.15) are proportional to a and can be neglected when

a << 1. Moreover, when a is so small that at 2/ I a2 << 1, for

example when a 10 - 3 , Eq. (4.18) yields

F Q (5.1)a~ aa

With the approximations described above, Eqs. (4.12) and

(4.15) govern the atom velocity and temperature distributions

in the atom shock and are completely uncoupled from the other

variables.

We first examine the thermal layer of thickness i2/C.

Shoul.d a diacontinuous solution arise within this layer, we in-

troduce at the discontinuity a shock layer whose thickness is the

next smaller length until a continuous transition is found from

the upstream state to the downstream one.

When = ii/C, x5 is replaced by x* = cx'/ii2 . On

neglecting terms of order of a and c in Eqs. (4.9) - (h.16), we

obtain a simplified system of shock layer equations. From Eqs.

(4.12) and (11.15)
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24 T
4(u a- 1) + U 1 =0 (5.2)

a

Equations (5.2) and (5.3) are identical to the Hugoniot conditions

and yield the following discontinuous solution:

near point 1 ua = u1  , T a T1  , (5.4)

near point 2 ua = u = 1 T a = T2 = 1 . (5.5)

This discontinuous solution indicates that there is a thinner

atom shock imbedded within the layer of thickness Iii2/c and

this shock will be studied later. Outside the shock the atom

flow is uniform.

From Eqs. (11.i) and (4.14) we find

ui = ua + 0(a ia2/Z ii2 )  (5.6)

Ti = Ta + 0(C2 ia 2/Z 2 ) " (5.7)

From Fig. 2 we recall that the ratio Iia2/1ii 2 is very small and

C ia 2 /1 2 is even much smaller. The ion slip is indeed negligible.
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Equation (4.13) yields two different equations, one on each

side of the discontinuity. Near the point m(m - 1,2) we have

dT T 1 2 dT bTl/2 1t1
_ f e( - Te + Q
i 7T &_ _ T- )2 e m) ee T ea 1

e u es2m

(5.8)

Equations (4.10), (4.9), and (4.16) determine respectively

the electric fiela, the charge separation and the potential by

the relations

CAD 2 dTe
2 e , (5.9)

C 2 dE
6 - (5.10)

TeT- T1  (5.11)

We now split each of Eqs. (5.8) into two first order dif-

ferential equations suitable for numerical integration. The

result is

dT zFe e. (5.12 )

e

dz 3 dTe b (T T) G (5.13)
u
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where

G=Qee Qea (
ea2

The independent variable x* is next eliminated by dividing Eqs.

(5.13) by Eq. (5.12). The resulting direction field equation

dz = f(z, T ) is integrated numerically between points 1 and 2
e

to give a relation z = z(Te). With z known, the electron tem-

perature distribution T (x*) can be found by integrating Eq.
e

(5.12) where the origin of x* is taken at a point such that

Te = T1 + 10-3. The electric field, charge separation and

potential distributions are computed respectively from Eqs. (5.9),

(5.10), and (5.11).

The upstream and downstream points 1 and 2 are obviously

singular points of the system of Eqs. (5.12) and (5.13) and the

direction field equation at these points is given by the ratio

of two vanishing gradients. It is therefore necessary to determine

the nature of the solution in the neighborhood of the singular

points by a suitable linearization. Since at the singular points

(m = 1,2) T = T and z = 0, we assume that in the neighborhood of
e m

the singular points the solution is of the form

T = T + Aekx *  z=Bekx*  (5.15)e m

where A and B are assumed to be small. On inserting these assumed

forms of the solutions in Eqs. (5.12) and (5.13) and retaining
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only those terms linear in A and B, one obtains a homogeneous

system for A and B. The condition for the existence of a non-

trivial solution is given by the characteristic equation. The

nature of the roots of the characteristic equation, here a

quadratic equation in k, determines the nature of the singular

points. The slope of the characteristic direction, dz/dT ,

at these points is simply B/A.

At the singular points m = 1,2 the characteristic equations

of the systen of Eqs. (5.12) and (5.13) are

bT1/2

fk 2 3F k m GF 0 (5.16)
2 e -T=- 2 m e =mT u m

m m

where F and G denote the values of F and G at point m.e m e
m

Equations (5.16) always have two roots of opposite sign. It

follows that points 1 and 2 are saddle points and the characteristic

directions are given by the relation

k T I / 2
dz m mdz= mm 9 (5.17)
dT F

e em

where k is the positive root and k2 the negative one of the

respective characteristic equations. The integral curves obtained

by integrating the direction field equation from points 1 and 2

successively are sketched in Fig. 3.
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It has been pointed out that there is a discontinuity in

the transition from point 1 to point 2. This discontinuity is

represented in Fig. 3 by the line 3-4, where point 3 lies on the

integral curve leaving point 1 at x - - - and point 4 is on the

integral curve reaching point 2 at x' + -. It will be seen

that this discontinuity corresponds to an atom shock of thickness

zaa2 << 2 ii2/ in which the ion velocity and temperature Jump

from their upstream to their downstream values but where the

electron temperature can be considered as constant. In particular

we have

T =T . (5.18)e 3  e

Integrating Eq. (4.13) with respect to x* between points 4

and 3 with the assumption of constant electron temperature we

obtain the following equation

XI3

f(z 3 -Z = T loge u1 + b (T 1) e3 2 G dx ,

(5.19)

The function G depends very weakly on the ion velocity and may

be regarded as constant. Since the shock thickness is thin,

x* x: and the integral on the right hand side of Eq. (5.19)

vanishes. The relation between the coordinate z of points 3

and 4 becomes
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T
e3

z3- - log u1  .

For each point of the integral curve 2-4 we compute the

corresponding point 3 from Eq. (5.20) to get the locus of point

3. The intersection of this locus and of the integral curve

1-3 determines the actual point 3. The solution is unique.

The electron temperature, electric field and potential

distributions in the thermal layer are plotted in Fig. 4 and 5
for M= 3 T1 - 104 OK 9 = i0 T1 = 103 oK, respectively

and a 10 - . n = 1015 cm in both cases. They are similar

to the corresponding distributions obtained in the fully ionized

1
case . Due to the high electron thermal conductivity, the

electron temperature rises to reach a value close to its down-

stream value at the atom shock. Because of the low degree of

ionization the atom gas is essentially unaffected by the electrons

and remains in its upstream state ahead of the shock front. In

fact, the electrons are heated up by a very small decrease of

ion-atom kinetic energy which is here negligible but which is

appreciable for higher values of a. The ion flow is to a very

good approximation in equilibrium with the atom flow. At MI = 3

the electron temperature rises slowly at first and then more and

more rapidly near the shock. At H1 = 10 on the contrary, the

electron temperature rises sharply at the very beginning and more

slowly afterwards. After the shock, the electron teorpirature

reaches its downstream value slowly through collisions with the
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atoms and ions. The thickness of the thermal layer varies from

3Rii/c at M = 1.5 to 0.75 tii/C at M = 10.
ii2 111i2

The electric field reflects the behavior of the electron

temperature distribution since It is proportional to its gradient.

It is always negative and for high Mach numbers exhibits a sharp

siagle oscillation at the beginning of the thermal layer as a

cor-relary to the sharp rise in T . It is precisely the samee

precursor electric shock layer which has been discussed 4n the

1fu.*Ly ionized case . Its thickness Is M 1 ii/C C L ii2/c. The

potential distribution is identical to the electron temperature

dist;tribution except for the potential Jump across the shock.

The atom shock structure equations are obtained now by

sett:ng As = £ a a 2  replacing xs by x = x'/taa2 and neglecting

teriis of order c and c. Equations (4.13), (4.12), (4.15), (4.ll),

(4.13), (4.10), (4.9), and (4.16) yield respectively the follow-

ing equations:

dT aa2e-- = 0(c ) --- 0 (5.21)
i i2

(hetice Te = constant = Te )

TI 1  du Tc -- - 32(a- 1) +- 1u (5.22)
aa a

TI1/2 dT T1/2 du

da a = 5 M 2 'u2 _1)+ .1(T -1)-cua a a
Qaa d 1 a Qaa dt

(5.23)
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1.

2 182 uia
Ui  U ----

a2 aj 1 172
aa 2 Qia (T a + T i)i/

T. + T d. a/2
du.) + e dT. la2  . du.

u.x 2-2c.dx F. dx!)
ui  I aa2  1

(5.24)

49.a2  uiua

T. = T a- 2 u (U -u )- -u

an2 Qia(Ti + Ta)-'21-

T1 ia/2  T/2

1 12  i I+T T+ du (a-d T
2d u. dx dxI(c(d F. cix"

I aa2

(5.25)

D2 T du.
E 2 3 1-- (5.26)t aa 2 u i  dx

D2 dE= --- (5.27)

aa2

*=-T loge (u) + *3 (5.28)

Equations (5.22) and (5.23) are the Navier-Stokes equations for a

neutral gas whose solution for the velocity and temperature

distributions is well kown17 . Since £ia 2/aa2 << 1 Eqs. (5.24)

17. D. Gilbarg and D. Paolucci, J. Rat. Mech. and Anal. 2, 617,
(1953).
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and (5.25) show that to a good approximation, u. = u and1 a

T = Ta except at the beginning of strong shocks where the

dimensionless temperatures are very small. Equation (5.28)

shows that the electrons in thermal equilibrium obey a

Boltzmann distribution

n= nt exp fe(o' - 0')/kT;e e3  3

The atom velocity and temperature distributions are obtained

by solving the system of Eqs. (5.22) and (5.23) according to the

procedure used earlier to integrate the electron temperature

distribution. Points 3 and 4 are singular points of this system

and the characteristic equation at point 4 is:

dck 2+ k[d(l - .M2 ) _- 3 c] + 2. (M2 _ 1) = 0 .(5.29)

Since M2 < 1, Eq. (5.29) has two roots of opposite sign. Point

4 is a saddle point. The characteristic direction of the integral

curve in the T - u plane is given bya a

dT(a) 1 (5.30)
a dk ---

2

where k is the negative root of Eq. (5.29).

The characteristic equation at point 3 is deduced from Eq.

(5.29) by replacing M2 by M1 in the parameters. Since M1 > 1, it

is easy to verify that the characteristic equation at point 3 has

2 positive roots and point 3 is a node.
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Tijavre is only one integral curve passing through the saddle

point 4 with the characteristic direction given by Eq. (5.30),

while the node 3 is a center of attraction for all integral

curves passing in its neighborhood. Therefore, the numerical in-

tegration is performed from point 4 towards point 3 and the origin

of x is chosen at an arbitrary point near point 4.

When the ion slip is small the ion velocity and temperature

distributions are assumed to be given by the following expansions

in the small parameter ia2/aa2

U. u + - u +...

aa2 1

(5.31)
£ia 

2
T. Ta + --2 T I +"'

1 a " 2 i

The terms uil ... , Ti ... are computed by substituting the

expansions (5.31) in Eqs. (5.24) and (5.25) and identifying the

terms of t .e same order in L a2/ aa. The first order terms are

2u2 du T + T dT

aL- - + 2 1 - ( 5 .3 2 )Ui aia (2T a) us P_

4u2 dT T du

T I  2U U I  b a2 dx +  a - "  (5.33)
1J 1 bQ 1a(2T a ) a

We note that the first order approximation for ui and Ti does not

contain the effect of ion viscosity and thermal conduction which

are very small.
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The electric field, potential, velocity, and temperature

distributions for atoms and ions are plotted in Figs. 6 and 7

for I = 3 and 10 respectively. The atom flow, unaffected by the

charged particles, undergoes a shock in which the dissipative

mechanisms are the atom viscosity and thermal conduction. Be-

cause of the large atom-ion cros. section, the ion flow follows

zlosely the atom flow and goes through the same shock. The

negative electric field induced by the charge separation slows

down the ions so that the ion velocity, which is at first slightly

larger than the atom velocity, then decreases more rapidly. The

ion temperature increases faster than the atom temperature and

the atom-ion equilibrium is reached at the end of the shock after

a sufficient number of atom-ion collisions.

At M1 = 3 the ion slip is small throughout the shock. At

= 10, the ion slip is still small except at the beginning of the

shock where the method of solution based on the expansions (5.31)

fails, as may be seen on Fig. 7. No acceptable numerical solution

for ui and Ti in the neighborhood of point 3 has been found yet.

Analytically, the solution fails because T1/ 2 is very small near
a

point 3 and the first order terms given by Eqs. (5.32) and (5.33)

are large. A physical explanation might be that the local collision

time proportional to T"I/2 is much larger at the beginning of the

shock than at the end because of the high temperature ratio across

the shock. As a result there are not enough ion-atom collisions at
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the beginning of the shock to keep the ion slip small. A smaller

value of the ratio I2 would improve the range of validity

of our solution.

The electric field, always nega.ive, shows a single

symmetrical oscillation. The ratio R of the Coulomb force acting

on the ions to the ion pressure gradient, defined by the relation

nIe JEI1

dpt

increases through the shock from 0.4 to 0.8 for H1 = 10. There-

fore, there is an important coupling of the electrical effects

with the ion flow.

The magnitudes of the shock thicknesses and of the electrical

effects are given in Table 1 for typical plasma conditions at

different Mach numbers. The thickness of the thermal layer ahead

of the shock front is denoted by AV. The shock thickness based

on the maximum atom velocity gradient is denoted by A2 and is given

by

uI -l1

a2  du

dx max

As the Mach number increases the dimensionless electric field and

the potential increase while the shock thickness increases. For

different temperature and density conditions the electric field E'
x

would vary/ as n'T'3/ and the potential rise asT.
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VI. PARTIALLY IONIZED PLASMA

We now consider in detail the case in which the degree of

ionization a is no longer small. In this case the ionized

particles have an important effect on the atom flow and the

magnitude of this effect increases with the degree of ionization.

We wish to investigate how the shock structure and the self-

induced electric field vary with the upstream conditions and the

degree of ionization. We shall compare the results obtained with

the limiting case of a fully ionized plasma.

The shock structure is now investigated according to the

method employed previously. We consider first the thermal layer

of thickness A = ii/ c where xs is replaced by x* = x/t ii2

Equations (5.6) and (5.7) still hold and we may set u, = Ual

Ti = Ta in the remaining shock equations. On neglecting those

terms of order c but retaining those of order a in Eqs. (4.12),

(4.15), (4.13), (4.10), (4.9), and (4.16) respectively we obtain

the following shock structure equations:

T T
5 (1+ a) (u -) + a - 1 + a (-I -)= ,(6.1)

a a

2a fTA 2 dT-- (I + ONua  1) + T -i 1 + (T -I)
5F e x a a e

e

(6.2)

Tl/2 dT dT T du bT1/2
d e e 3 e ea e (T -T ) G

uF + dx* e a
e a ua

Ii- -I
\u 3./
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where G is defined by (5.14),

CAD2

E - 2U (L (6.4)
ii2  a

CAD2 dE

6 E D2 -- (6.5)

ii2 dx*

2  E dx*= u d(- e) (6.6)

CAD2
21 1

Equation (6.1) may be solved for T and the resulting relationa

used to eliminate T in Eq. (6.2) to givea

TI1 2 dT 0 2 (1 +, )
ef__ e 2 +-, (u i)(u (6.7)
F e3a a i36.7a)
e

where u1 = ( 4/M

Differentiating both sides of Eqs. (6.7) with respect to x*,

substracting the resulting equation from Eq. (6.3) and solving
dua

for a we obtain

du dT bTl12 Ta- .[3_.e+ (T - T)G][5( + a) (- 8 + M2 + 1) -
-dx- +2 2 e a 2a3 ,2a 32 uU a

a

(6.8)

Once T is eliminated in Eq. (6.8) with the aid of Eq. (6.1),

a
Eqs. (6.7) and (6.8) form a set of two first order differential
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equations in T and u . The method of solution is the same ase a

that described earlier for the weakly ionized case. The variable

x* is eliminated by dividing Eq. (6.8) by Eq. (6.7) and the

direction field equation du /dT = f(T , ua) is integrated

between points 1 and 2 to give a relation ua Ua (Te ). The

electron temperature distribution T (x*) is obtained by integratinge

Eq. (6.7) and the ion temperature distribution, electric field,

charge separation, potential are given in turn by Eqs. (6.1),

(6.4), (6.5) and (6.6) respectively.

Points 1 and 2 are again singular points of Eqs. (6.7) and

(6.8) and the characteristic equation at the points m = 1,2 is

2 2a2afbGF -l+M 2 ) + -k- (1- ( + "
Fe 5(l+a) i 2 m 5F 3 me e

m m

+ b G(. - M2 ) (1 + a) = 0 (6.9)m m

The characteristic directions are

dua 2af-- -- = . . .-- - ,(6.10)
dT i-)2 )

e 5(1 + a)F (l 2 
(.)

e inm

The product of the roots of Eq. (6.9) is of the sign of the

expression (1 - M) 2 - 1 + M ). At point 1,
in 5(i + a) - m

2a
1 5( + and the product of the roots is negative,

Eq. (6.9) has 2 roots of opposite sign and point 1 is a saddle
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point. At point 2 two different situations arise: if

2az
2 5 + - ' Eq. (6.9) has two negative roots and point

2 is a node. The minimum value of 142 is reached at a = 1

(fully ionized plasma) and corresponds to a maximum free stream

Mach number of 1.12. This situation, therefore, corresponds

to weak shocks. If 142 < 1 - 2a Eq0. (6.9) has two'5(1 + a)-

roots of opposite sign and point 2 is a saddle point.
1

As in the fully ionized case but in contrast to the

weakly ionized case, fcr a # 0 there are two different types

of shock structure depending upon the Mach number. The

particular "weak shock" solution cannot exist in the weakly

ionized case because the condition 1 - 2a < M2 < 1 cannot

be satisfied when a % 0.
2 >i- 2a h

In the weak shock case, when M2 > I - a t
2 5(1 + a) * h

numerical integration is carried out from point 1 to point 2.

The solution in the ua, Te phase space is continuous and has no

extrema. The shock structure consists of a single relaxation

layer. The results for M = 1.074 at a = 0,7 are plotted in

Fig. 8. The shock thickness is so large (Z i2/c) that the atoms,

ions, and electrons make many collisions and are in mechanical

and thermal equilibrium through the shock.

When < 1 - + the integral curve pattern in the

uas Te phase space is sketched in Fig. 9. The integral curve 1-3

leaving point 1 with the appropriate characteristic direction

(corresponding to a positive root of Eq. (6.9)) has a maximum at
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point 5 where it intersects the isocline of zero slope, a parabola

whose equation is

T = 2_ (1 +3 ) u ".$.L + .2. + 1)e 2a a 3 2 a 3 1

and does not reach point 2 with the proper characteristic direction

(corresponding to a negative root of Eq. (6.9)). Similarly, the

integral curve 2-4 leaving point 2 with the appropriate direction

does not reach point 1. There is no continudus integral curve

joining points 1 and 2 and we must adopt the discontinuous solution

1-3-4-2. The discontinuity between points 3 and 4 represents a

shock layer much thinner than the thermal layer which is investigated

below.

We know that the shock thickness is of the order of £ for
aa2

a weakly ionized plasma and of the order of £i for a fully ionized

plasma. We may expect that, for intermediate values of the degree

of ionization, the shock thickness is a function of the three mean

free paths Z aa 2, .. 2 1ia 2 . Considering the case in which a is

small (, 0.3) we again set As = .aa2  Eq. (4.15) gives:

dT aaaa
de ( 2  0 (6.11)
dx = 1 1 I

Hence, the electron temperature Te may be considered as constant

inside the shock and we set

T =T . (6.12)e e
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On using Eq. (6.12), Eqs. (4.11) and (14.14) yield

2 i a2 u4ua  dui  Ti + Te3
uUi= - I / . 2 M1+i.. 2 3Sata Qa(T + Ti)/2 ui

i2. l i/2 dui

4 dTi ------ d ( - )) (6.13)
u cdx aa2 i

41 ia2 u iu a

i a 9 a i  a/ bt aa2Qia(Ti + Ta)1/2

dT Ti du. zia 2  T1 /2  du 2
- - (c "-)2dx u dx t aa2  F dx

Ti/2 dT
+ d L_ (- - (6.14)

dx F d

The ion slip is of the order of Iia/ aa2 , therefore small. It

follows that, for a small, we may, to a good approximation replace

ui by ua and Ti by Ta in Eq. (4.12) which becomes

da L ia T
cT a (1/.2a + 2 5 M2(1 + a)(u 1) + a

dx F Ft ~ 2aua i aa2  a

T

- 1 + a(e-- )(6.15)
a

It is convenient at this point to replace Eq. (4.13) by the

equation obtained by adding the atom and ion energy equations
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(2.6) which, in dimensionless form, is written

dT at.

dT 1/ + ) = -a + a2(i + a) ua
a dx F a Ft a2 7 2 aa Fiaa2

+(l +a)( +2  )u + T - aT (1 + log u F
32 a 2 a e3  e a

(6.16)

The derivation of Eq. (6.16) is given In the Appendix B. The

constant of integration F is determined at the boundary conditions

at point 3 or 4.

The Hugoniot relations for the shock provide the boundary

conditions at points 3 and 4 and are obtained by setting the

derivatives in Eqs. (6.15) and (6.16) equal to zero. They are

5 + T
TM + T ( - 1 + T o (6.17)

a 3

or i + a) U~a + y Ta - aTe3 loge La -F= 0 . (6.18)

The elimination of T between Eqs. (6.17) and (6.18) and of Fa

computed at point 4 gives the "Jump" condition-satisfied by

the velocity at point 3

u
( + l)(U -u - _(U u2 ) - 2a 1 a =0

3 12 ( u - 4 T lg T
3 a3 a+ e3 C 4

(6.19)



-50-

If we put

u
2 T log (a!)31 3 u4

and

Y2 = 5(u a - u4)[(5 + 1) - (Uau )

then from Fig. 10 it is clear that the equation yl = y2 % equivalent

to Eq. (6.19), has only one root ua other than u = u4, For eacha a 1

point of the integral curve 2-4, we compute the corresponding point

3 from the Jump condition (6.19) to get the locus of point 3. The

intersection of this locus and of the integral curve 1-3 leaving

point I determines the actual point 3. The solution is unique.

The structure equations (6.15) and (6.16) are integrated in

the same way as the thermal layer equations. The characteristic

equation at the singular points m = 3,4 obtained by setting

ua= um + Aekx , etc., is here

ua m

(2 .. . .k 2 + a) -12 k T T +]

F2F a3 2 u2 2a u
a m mm

2 4l + 1) i + a (.1M + i) -(3, + e 3

+ o) s (6.20) 1)
u a 3 2 2 20(.o

where F is the value of the function F at point m. Point 3a am
turns out to be a node a'.d point 14 a saddle point. The atom
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velocity and temperature distributions are obtained by integrating

the direction field equation dTa/dua = g(ua, Ta) from point 4 to

point 3.

The ion velocity and temperature distributions may not be

given by the expansions (5.31) when the shock thickness is smaller

than t . However, retaining the assumption of small ion slipaa 2

we substitute u and T for u. and T. in the right hand side ofa 1 1

Eqs. (6.13) and (6.14). This iterative method yields the follow-

ing first order approximations for ui and Ti:

2 2

2ia u T + T
2a dua 5

a e3
U. ai-- [----- --i[(-Ml + ) - 2 ' 3

ui a a Q(T 1/2 ' 32 2at aa2Q i (2T a ) i a

dT tTI /2 du
1 a a2 d (a a)] (6.21)

T' dx I dx F dx
a aa2

a a 3dT
T . T - M(1c (u - u)-2
i a 9 2 a i a bti a Q(2T) 1 12  2 dx

2

T du tia2  T1 12  duT1 /2 dT
+-a 2a (-(c -- ) + d a a

u dx 2.F dx dx F d
a aa2

(6.22)

It is found that the ion viscosity and thermal conduction appreciably

reduce the ion slip and must be taken into account for a > 0.1.
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As in the weakly ionized case, the electric field, charge

separation and potential are given respectively by Eqs. (5.26),

(5.27), and (5.28).

Results for two different degrees of ionization a = 0.1

and a = 0.5 at a free stream Mach number M1 = 2 are presented

in Figs. 11 and 12 respectively. In contrast to the weakly

ionized case, the atom shock retains some features of the ion

1
shock in the fully ionized case

In the thermal layer the electrons are heated up by the

decrease in the kinetic energy of the flow, faster than the heavy

particles, because of their higher thermal conductivity. When

the degree of ionization becomes higherV the thermal energy of

the electrons represents a larger fraction of the total energy

and the velocity drop and the heating of atoms and ions increase.

The heating and the compression of the heavy particles occur,

mainly i4 the shock layer where it can be seen that the atom and

the ion temperatures overshoot their downstream values. Because

of their much smaller mass the electrons do not have time in a

few mean free paths to exchange energy with the heavy particles

and the electron temperature is approximately constant through

the shock.

The dissipative mechanisms in the shock are the viscosity

and the thermal conduction of the ions and atoms. The ion slip

is everywhere small for a = 0.1; it is considerably larger for
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a = 0.5. Moreover it may be seen on Fig. 12 that the ion tem-

perature and velocity distributions obtained from Eqs. (6.21)

and (6.22) are locally in error at both ends of the shock where

they overshoot their boundary values. In fact, for a = 0.5 the

solutions ua(x) and Ta(x) obtained from Eqs. (6.15) and (6.16)

do not represent the true atom velocity and temperature

distributions but rather the average distributions for the whole

plasma. Ibis approximation may be responsible for the erroneous

behavior of the ion velocity and temperature distributions at

both ends of the shock. Unfortunately no acceptable numerical

solution which permits a simultaneous calculation of the ion and

atom velocity and temperature distributions has as yet been found.

The electric field varies slowly in the thermal layer and

there is a single oscillation of negative amplitude in the shock.

The potential reaches its maximum value at downstream infinity.

The shock structure for a strong shock (M1 = 10) at a = 0.1

is shown in Fig. 13. As in the weakly ionized case the electron

temperature rises sharply at first and the electric field has a

very sharp negative oscillation with a slower damping in the

precursor electric shock layer at the beginning of the thermal

layer. The ion slip is more important than at M1 - 2 for the same

degree of ionization and for the same reason as in the weakly

ionized case the ion velocity and temperature distributions

obtained from Eqs. (6.21) and (6.22) are in error near point 3.

(The erroneous parts are drawn in dotted lines on Figs. 12 and 13.)
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The variatio of the shock thickness A and of the mnij T

s

electric field and potential with the degree of ionization a is

given in Table II for M = 2 and 14, = 10. When a increases, the

total number of atoms and ions being constant, the maximum electric

field measured in V/cm increases, but since the shock thickness

(measured in cm) decreases the potential rise acrcss the shock

stays constant for all degrees of ionization. The shock thickness

is a minimum and the electric field is a maximum when the plasma

is fully ionized. The shock thickness is smaller than the down-

stream atom-atom mean free path I aa for a > 0.2 but is always

much larger than the downstream ion-ion mean free path Iii2

except vhen a = 1. The shock thickness decreases with the Mach

number while the electric field and potential increase.

VII. CONCLUDING REMRKS AND COMPARISON WITH EXPERIMENT

The model that we have proposed covers in principle all plasma

regimes from weakly to fully ionized. But unfortunately, the

difficulty of numerically integrating more than two simultaneous

differential equations between singular points requires that the

solution be limited to an ionization less than about 30% so that,

the ion slip s "s small throughout the shock.

Some feacures of the shock structure are common to all plasmas

regimes such as the broad region of elevated electron temperature

ahead of the shock frc.nt ani the induced electric field which travels

with the shock front. The potential rise across the shock is in-

dependent of the degree of ionization.
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When the degree of ionization a varies from very low values

to one, the shock strength decreases, and a partial compression

and heating of the heavy particles occurs ahead of the shock

front. The atom and ion temperatures overshoot their downstream

values. The shock thickness, which is of the order of the down-

stream atom-atom mean free path when a << 1 and of the order of

the downstream ion-ion mean free path when a = 0(l), decreases

continuously when a goes from zero to one.

The potential rise across the imbedded shock in a magnetic

annular shock tube was measured by Heywood 1 8 4n partially ionized

hydrogen at a free stream temperature of 3000 K, a molecular

density of 8.75 • 1015 cm-3 and a shock speed of 12.5 cm/ps.

An electric probe, consisting of two steel electrodes separated

by a distance of 0.6 cm and insulated from each other, was placed

parallel to the axis of the shock tube, half way between the in-

ternal and external diameters. The electrodes were connected to

the poles of an oscilloscope which measured the axial potential

difference between them (voltage). The voltage distribution with

time is shown 3n Fig. 14. As the travelling shock reaches the first

electrode, the voltage, initially zero, increases to a sharp peak of

36V and decreases to zero again. The voltage variation occurs over

a travel time corrcsponding to a distance of 1 cm. (The voltage in-

crease on the right is due to the driving currents of magnetic

origin and is irrelevant here.) This result shows that the shock

18. J. B. Heywood, Ph.D. Thesis, Department of Mechanical Engineer-
ing, M.I.T., Cambridge, September 1964. To be published.
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thickness is at most equal to 1 cm al :%ough not smaller than the

distance between the electrodes; were it otherwise, the voltage

curve would have a flat maximum. Therefore in this case, the

shock thickness is of the order of 0.6 cm, the distance between

the electrodes, It may be possible in future experiments to

evaluate the shock thickness more accurately by varying the

distance between the electrodes. The maximum voltage occurs when

the shock is exactly between the electrodes and represents the

potential rise across the imbedded shock. For the conditions of

the experiment, assuming that the dissociation is complete and

5% of the hydrogen is ionized, which corresponds to a free stream

Mach number of 60, the theory predicts a shock thickness of 0.25 cm

and a potential rise across the imbedded shock of 35V. The agree-

ment with the measured potential rise of 36V is excellent, the

agreement with the approximate measurement of the shock thickness

is also good. These results suggest that the measurement of the

potential rise may actually be a relatively simple method for the

determination of shock thickness and the shock front location in

shock tube experiments.
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APPENDIX A

ATOMI-ION ENERGY TRANSFER

Following Byron and Ptce16the ion-atom energy transfer

per unit volume due to the random motion of the particles is

m 1
AE =- n n' I~.),gg f. dc dc , (A.1)

2 i aJ f 9 O a i 1a

where g is the re±ltive velocity in the mass center system,

G the center of mass velocity, o(g) the cross section for ion-

atom collisions, f and f. are arbitrary normalized distribution
a i.

functions and c i and c a the random particle velocities. The atom

mass is taken equal to the ion mass mi.

We choose c a and gas variatles of integration. According to

the equations

cj g +c C , (A.2)

dc dg ,(A-3)

Eq. (A.1) becomes

AE "min .c 9a a~g) g f f~ dg do +' Jina g (g) f f d dca

(A.5)
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Substituting into Eq. (A.5) the Maxwell distributions

" 2)kT' exp mia /2kT') , (A.6)
a

-1/ c2 g2  * (A.7)
fi (ca + g) = ( )3/2 exp [-2kT! (Ca + + 2c )

1 1

we obtain

2 2
m M. 3i ( C a.

AE =- nn' ( 1() { (g) g exp ( 2 a  g exp [I
2 ia 22k /T!2 fTO ca * g 2k T27rk rT !Tt

1 a

2~ I ig

+ ,)-mc. g/kT!] dC d + I g (g) exp (-2-.
a I a J ep T)

a i ep[ma 1 mif 1" ,

2

2k I- L ( + M) - • g/kT!] dc dg) (A.8)
1 a

Integrating Eq. (A.8) with respect to the atom velocity and

transforming the integration over the velocity g into an integration

over the speed g we obtain

mi  T ' Go-i 2
AE =2wmI n'tn' . ]3/2 ,a gm Gg ep -7d

+2kT + Tg) T!g Fx 2k 2k(T ++a
a i&f

0 0

2

+ nng5  -(g) exp [ dg2 f ~ 2k(T! +T7
0 1 a

i T 2 (T st g 5.(g) exp)
/~(2k) 32 Ta +T i 0 kT + Ta)

(A.9)
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Assuming that the cross section a(g) is independent of g as in the

hard sphere model the integral term is easily computed and

the result is

AE = 2r2 [k- (Tk + T') ]1/2 Qi n'n' k(T' - TI) , (A.1O)

- 1- (T a ia nina 'i a'

where we have set a(g) = Qa"

The total energy transfer is the sum of the energy transfers

due to the random and directed motios of the particles and is

written

m + UaPi= 2( )1 12 n'n' [k (T + Ta)]l/2 Q!a[k(T' - Ti)
ai a ai W a a ia a i

(u; - UP)
+ 3 mu -(u'u + uV)] " (A.11)

APPENDIX B

ION-ATOM ENERGY EQUATION

On adding the ion energy equation (2.6, J - j) to the atom

energy equation (2.6, j = a), we obtain the following equation

C du' 2  Ci du 2  5 dai a dx i 2 5x d ( ''kT
+ kT' + niu i kT ) - C eE '

-i2 dx 'xI r a ii -C

du' d dul dT' d dTa-) ---) (, I,,," ((K a 6C
a a -iP i dx - a -(BxM7 i d l)

= ae + a ae + ie + ulPie (BI
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Inside the shock of thickness I, or X.. , the momentum andaa2  n2

energy transfer between the electrons and the heavy particles is

negligibtle and the right hand side of Eq. (B.1) vanishes. Further-

more, inside the shock T' is constant and Eq. (2.10) yields
e

C. kT du!
C. eEx = i - - I (B.2)
± x U

I

On substituting CieE' by its value from Eq. (B.2) in Eq.
2. X

(3.l) and integrating with respect to x' when T' is constante

we obtain the following equation

dT1 du' dT' du' C
a u'" a + ,,a u2

a dx + aa dx' + i ui i  = m1 2 ua

+ m -i u!2* + k(CaTa + CiT i ) - Ci kT' log u' - F (B.3)
1 2 2 aa i e loei B3

which in dimensionless form may be written

L 1/ T112 L
aa2 a dT du i ia2  dT dui

(d -+cu-F (d + cuA F (d ua d'- (I a ) F tAs  dx i dx-
sa 8 s s s

aT

( )(u2 + a 2  ) + a Ti) e + a r g u . F- (l~s a a ui) CL ) i-

(B.4)

In the shock we set A aa2  x=XUi i =' Te =Te3

and Eq. (B.4) becomes
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1a2/2du a 12 Ta) 5M 2

F F iI a dx a dx 2 a

+1T- aT log u - F .(B-5)
2a e, e a

Multiplying Eq. (6.15) by uA and subtracting from the above

equation, we obtain Eq. (6.16).
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Fig. 3. Integral curves in z -T eplane for weakly ionized

plasma (arrows indicate direction of increasing X*).
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rig. 4i. Electron temperature, electric field and potential

distributions in the thermal layer for the weakly-

ionized case (a - 10-3) at 1,= 3
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Fig. 5. Electron temperature, elec~tric field and potential distributions in the thermal

layer for the weakly ionized case (ai = 103 ) at M4 IM 10.
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Fig. 7. Velocity, temperature, electric field and potential

distributions in the atom shock for the weakly

ionized case (a = 10-3 ) at M, = 10.
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Fig. 14b. Detail of the region shown by the arrow in Fig. 1 4 a

corresponding to the potential rise across the imbedded shock.


